SouthernBiotech

Mouse Anti-Chicken IgM

Cat. No.	Format	Size
8300-01	Purified (UNLB)	0.5 mg
8300-08	Biotin (BIOT)	0.5 mg

Chicken peripheral blood lymphocytes were stained with Mouse Anti-Chicken IgM-UNLB (SB Cat. No. 8300-01) and Mouse Anti-Chicken CD3-PE (SB Cat. No. 8200-09) followed by Goat Anti-Mouse IgM, Human ads-FITC (SB Cat. No. 1020-02).

Overview

Clone	M-4
Isotype	Mouse (BALB/c) IgMκ
Immunogen	Affinity purified chicken Ig or isolated lymphocytes
Specificity	Chicken/Turkey IgM; Mr 820–950 kDa
Alternate Name(s)	N/A

Applications

FC – Quality tested ¹⁷⁻²¹ IP – Reported in literature ¹ Stim – Reported in literature ²⁻¹⁷ Apop – Reported in literature ^{7,8}

Working Dilutions

Flow Cytometry	Purified (UNLB) antibody	\leq 1 μ g/10 ⁶ cells
	BIOT conjugate	\leq 1 μ g/10 ⁶ cells
	For flow cytometry, the suggested use of these reagents is in a final volume of 100 μL	
Other Applications	Since applications vary, you should determine the optimum working dilution for the product that is appropriate for your specific need.	

For Research Use Only. Not for Diagnostic or Therapeutic Use.

Handling and Storage

- The purified (UNLB) antibody is supplied as 0.5 mg of purified immunoglobulin in 1.0 mL of borate buffered saline, pH 8.2. No preservatives or amine-containing buffer salts added. Store at 2-8°C.
- The biotin (BIOT) conjugate is supplied as 0.5 mg in 1.0 mL of PBS/NaN₃. Store at 2-8°C.
- Reagents are stable for the period shown on the label if stored as directed.

Warning

Some reagents contain sodium azide. Please refer to product specific SDS.

References

- 1. Chen CH, Lehmeyer JE, Cooper MD. Evidence for an IgD homologue on chicken lymphocytes. J Immunol. 1982;129:2580-5. (Immunogen, IP)
- Mahajan S, Vassilev A, Sun N, Ozer Z, Mao C, Uckun FM. Transcription factor STAT5A is a substrate of Bruton's tyrosine kinase in B cells. J Biol Chem. 2001;276:31216-28. (Stim)
- Venkatachalam K, Ma H, Ford DL, Gill DL. Expression of functional receptor-coupled TRPC3 channels in DT40 triple receptor InsP3 knockout cells. J Biol Chem. 2001;276:33980-5. (Stim)
- Patterson RL, van Rossum DB, Ford DL, Hurt KJ, Bae SS, Suh P, et al. Phospholipase C-γ is required for agonist-induced Ca²⁺ entry. Cell. 2002;111:529-41. (Stim)
- 5. Ma H, Venkatachalam K, Parys JB, Gill DL. Modification of store-operated channel coupling and inositol trisphosphate receptor function by 2aminoethoxydiphenyl borate in DT40 lymphocytes. J Biol Chem. 2002;277:6915-22. (Stim)
- 6. Brummer T, Naegele H, Reth M, Misawa Y. Identification of novel ERK-mediated feedback phosphorylation sites at the C-terminus of B-Raf. Oncogene. 2003;22:8823-34. (Stim)
- Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol. 2003;5:1051-61. (Stim, Apop)
- Assefa Z, Bultynck G, Szlufcik K, Nadif Kasri N, Vermassen E, Goris J, et al. Caspase-3-induced truncation of type 1 inositol trisphosphate receptor accelerates apoptotic cell death and induces inositol trisphosphate-independent calcium release during apoptosis. J Biol Chem. 2004;279:43227-36. (Stim, Apop)
- Morita T, Tanimura A, Nezu A, Kurosaki T, Tojyo Y. Functional analysis of the green fluorescent protein-tagged inositol 1,4,5-trisphosphate receptor type 3 in Ca²⁺ release and entry in DT40 B lymphocytes. Biochem J. 2004;382:793-801. (Stim)
- 10. van Rossum DB, Patterson RL, Kiselyov K, Boehning D, Barrow RK, Gill DL, et al. Agonist-induced Ca²⁺ entry determined by inositol 1,4,5trisphosphate recognition. Proc Natl Acad Sci USA. 2004;101:2323-7. (Stim)
- 11. Cui J, Matkovich SJ, deSouza N, Li S, Rosemblit N, Marks AR. Regulation of the type 1 inositol 1,4,5-trisphosphate receptor by phosphorylation at tyrosine 353. J Biol Chem. 2004;279:16311-6. (Stim)
- 12. Guillemette J, Caron AZ, Regimbald-Dumas Y, Arguin G, Mignery GA, Boulay G, et al. Expression of a truncated form of inositol 1,4,5-trisphosphate receptor type III in the cytosol of DT40 triple inositol 1,4,5-trisphosphate receptor-knockout cells. Cell Calcium. 2005;37:97-104. (Stim)
- 13. He L, Hewavitharana T, Soboloff J, Spassova MA, Gill DL. A functional link between store-operated and TRPC channels revealed by the 3,5-bis(trifluoromethyl)pyrazole derivative, BTP2. J Biol Chem. 2005;280:10997-11006. (Stim)
- 14. Soulsby MD, Wojcikiewicz RJ. Calcium mobilization via type III inositol 1,4,5-trisphosphate receptors is not altered by PKA-mediated phosphorylation of serines 916, 934, and 1832. Cell Calcium. 2007;42:261-70. (Stim)
- 15. Terashima M, Takahashi M, Shimoyama M, Tanigawa Y, Urano T, Tsuchiya M. Glycosylphosphatidylinositol-anchored arginine-specific ADPribosyltransferase7.1 (Art7.1) on chicken B cells: the possible role of Art7 in B cell receptor signalling and proliferation. Mol Cell Biochem. 2009;320:93-100. (Stim)
- Morita T, Tanimura A, Baba Y, Kurosaki T, Tojyo Y. A Stim1-dependent, noncapacitative Ca²⁺-entry pathway is activated by B-cell-receptor stimulation and depletion of Ca²⁺. J Cell Sci. 2009;122:1220-8. (Stim)
- 17. Alinikula J, Kohonen P, Nera K, Lassila O. Concerted action of Helios and Ikaros controls the expression of the inositol 5-phosphatase SHIP. Eur J Immunol. 2010;40:2599-607. (Stim, FC)
- 18. Nera K, Alinikula J, Terho P, Narvi E, Törnquist K, Kurosaki T, et al. Ikaros has a crucial role in regulation of B cell receptor signaling. Eur J Immunol. 2006;36:516-25. (FC)
- 19. Girish CK, Smith TK, Boermans HJ, Karrow NA. Effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on performance, hematology, metabolism, and immunocompetence of turkeys. Poult Sci. 2008;87:421-32. (FC, Turkey Reactivity)
- 20. Del Cacho E, Gallego M, López-Bernard F, Sánchez-Acedo C, Lillehoj HS. Isolation of chicken follicular dendritic cells. J Immunol Methods. 2008;334:59-69. (FC)
- 21. Del Cacho E, Gallego M, Lillehoj HS, López-Bernard F, Sánchez-Acedo C. Avian follicular and interdigitating dendritic cells: isolation and morphologic, phenotypic, and functional analyses. Vet Immunol Immunopathol. 2009;129:66-75. (FC)